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1. Introduction
In deep learning literature, the problem of 3D reconstruc-

tion from images is formulated under different perspectives:
with voxel grids, object volumes are estimated in a discrete
3d space [17]; with continuous space representations [10],
the volume is determined by a decision boundary in the 3d
space; with neural radiance fields [5], MLPs are optimized
to learn a volumetric render for a specific object, with views
as ground truth. Despite [5] overcomes difficulties in op-
timization for methods such as [17], [10], multiple GPUs
are still required to learn such rendering functions, which
mostly overfit a single scene or object.

Recently, Nichol et al. [4] introduced diffusion [9] to
learn 3D point clouds: a generative model learns 3D priors
in a distribution of objects and given a single-view image,
it is possible to sample a cloud in 1-2 minutes with a single
GPU.

We further develop this line of work with two techniques
to condition a diffusion model on multiple views; we con-
duct experiments with a pipeline to extend text-to-3d with
multiple synthetic views; finally, we attempt reconstruct 3D
point clouds from photos ”in the wild”.

1.1. Diffusion models

Generative models based on diffusion [9] approximate a
data distribution through progressive noising x1−→t of a sig-
nal x0 (forward process) and denoising (backward process)
with a neural network ϵθ, such that x̂0 = xt − ϵθ(xt, t).
Conditional sampling is possible by denoising a random
signal with images, text or any other token sequence pro-
vided to ϵθ.

1.2. 3D Point cloud generation with Point-E

(Figure 1) Given a random cloud x0 ∈ RK×6 of K
points (x, y, z, r, g, b), [4] apply diffusion with a trans-
former as denoising network ϵθ. Once xt ∈ RK×6 is com-
puted with the forward process, ϵθ predicts the added noise

Figure 1. A denoising transformer used in [4] for point cloud dif-
fusion.

ϵ from the concatenation of xt, t and a conditioning view
v ∈ R256×D′

, encoded as patches with ViT-L/14 CLIP
from [3]. All the input tokens are linearly projected to a
standard embedding dimension D.

1.3. Contributions

A single view of an object may not contain enough infor-
mation for sound 3d reconstruction: e.g. from a top view, it
is not possible to accurately estimate the height of an object;
reconstruction of occluded parts can introduce blurring or
artifacts. We introduce multi-view conditioning for Point-
E [4] with two possible methods:

• Patch concatenation: CLIP embeddings of multiple
views v1, ..., vn ∈ R256×D are horizontally stacked,
resulting in a single token sequence o length N×256×
D. The denoiser ϵθ attends to all views at each step.

• Stochastic conditioning: as in [7], a random view
vi, i ∼ U(1, n) is drawn at each denoising step. The
cost of computation is unchanged as one view at a time
is used, however the price to pay is stochasticity yield-
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ing different combinations of conditioning views and
thus varying outcomes. Increasing the number of de-
noising steps allows view probabilities to converge.

2. Experiments
2.1. Text-to-3d with Stable Diffusion

We firstly generate a synthetic image from text with Sta-
ble Diffusion 2 [16]: a pre-trained, freely accessible text-
to-image model based on Latent Diffusion [13]. To remove
shadows, background and undesired objects from the gen-
erated image, we also provide as input a starting 256× 256
image u, which consists in a white background with a cen-
tral black square to inpaint the generated content. Accord-
ing to the pipeline in Figure 2 (a), the synthetic image is
then provided as input to Point-E to obtain a K × 6 point
cloud. Point-E includes two diffusion modules: base, to
generate a K1 = 1024 cloud from visual semantics; up-
scale, which given K1 points and the conditioning view, it
generates the remaining K2 = 4096 − K1 points for 4K
resolution. Results from appendix 4.1 show that Point-E
yields clouds consistent with the provided view from fixed
perspectives, while it can present color distortions, wrong
depths or spots without points for occluded parts.

2.2. Multi-view with Patch Concatenation

We expand the conditioning approach described in para-
graph 1.2: multiple views are encoded with the pre-trained
image encoder from OpenAI CLIP [3], forming a vec-
tor of input tokens v1, ..., vn ∈ R256xD′

, with D′ a pre-
defined embedding length for CLIP. The sequence of to-
kens provided to the denoising transformer is thus: c =
(v1, ..., vn, t, xt) with vi, t, xt ∈ RD, composed by the con-
ditioning view patches, a timestep embedding and the noisy
cloud of K points after t noising steps; each token is pro-
jected to the dimension D with learnable linear projection
Wθ. As the denoising network ϵθ attends to multiple views
at each step, we notice an increase in time of inference by
around ∼ 50% for 4 conditioning views1. Results from 4.2
highlight two phenomenons:

• Given views of the same object with slight seman-
tic differences (e.g. a hamburger with different slices
of stuffing), such details are combined in the recon-
structed point-cloud. Semantic compositionality could
be further investigate e.g. to compose new scenes.

• With a single conditioning view, occluded object parts
are reconstructed according to object priors learned
during training (which do not always match the
queried object). With multiple views, the generated

1All the experiments have been conducted with a single RTX 3070 Lap-
top GPU with 8GB of VRAM.

point cloud holds semantic consistency with the visual
description.

2.3. Multi-view with Stochastic Conditioning

As an alternative to the method described above, inspired
by [7] we apply stochastic conditioning: a random view
from a given set is used for conditioning at each denoising
step. As anticipated, there is no difference in time of infer-
ence as one view at a time is used, however more denoising
steps may be necessary to ensure that all the views have
been uniformly seen. Results in appendix 4.2 show this
methodology yields similar or reconstructions wrt. 2.2 in
simple subjects with occluded parts, given the same amount
of denoising steps.

2.4. Novel view synthesis from generated images

To generate multiple views from a synthetic image, we
choose 3d-diffusion from Watson et al. [7]: starting from
a single view v and a pair of rotation-translation matrices
(R, t), the model generates a new frame of the object for a
query pair of matrices (R′, t′); the generated view is added
to the set of conditioning views to re-iterate the process,
for each denoising step a random view is used as condi-
tioning signal. Due to the prohibitive computational cost to
train this network on a large set of object priors, we conduct
our experiments with pre-trained weights on the Scene Rep-
resentation Network-Cars dataset provided by [15]. Cur-
rently, there is a collaborative effort from open AI commu-
nities to train and release a ShapeNet version. Figure 2 (b)
shows a scheme of the described pipeline. Despite imper-
fections in the synthetic views, Point-E can generate a 3d-
consistent cloud of the object described in the prompt. We
recognize potential limitations in this approach: without a
significant overlap between the training sets of respectively
the text-to-image and the 3d-diffusion models, the gener-
ated views would not contribute significantly to reconstruct
the described object.

2.5. Reconstructing 3D from real photos

Shifting from prompt-generated images to real photos,
we test a simple pipeline for 3D point cloud generation:
to identify the subject of the photo and to isolate it from
the background and irrelevant objects, we use a U2Net [19]
pre-trained for Salient Object Detection. With respect to
models from the baseline, U2Net combines contextual in-
formation with local features perceived through receptive
fields of multiple sizes; moreover, this architecture allow for
near real-time inference on a single GPU2. The processed
views are provided as input to Point-E with the methodolo-
gies described above. As shown in 21, significant gain in

2U2-Net (176.3 MB, 30 FPS on GTX 1080Ti GPU) and (lightweight)
U2-Net (4.7 MB, 40 FPS)



Figure 2. (a) Single-view text-to-3d with Point-E on top of Stable Diffusion 2. (b) Multi-view text-to-3d with with 3DiM in addition, on
top of Stable Diffusion 2.

reconstruction quality is obtained with multiple condition-
ing views, as shape details and proportions are difficult to
estimate from e.g. a single, top view.

3. Evaluation

3.1. Dataset

All the generated datasets have been published with code
3. We considered as sources: ModelNet40 [2] (as included
in the work from [4]), ShapeNetV2 and ShapeNet [6]. For
each mesh, we stored:

• The id label of the object

• A sampled he mesh into a uniform point cloud

• The rendering of the ground truth meshes with differ-
ent poses that portray the object from different views

In the ModelNet40 and ShapeNetV2 datasets, there were
no textures available. In a few situations it may be diffi-
cult to reconstruct the 3D object where the shapes in the
views are not sharply defined. Therefore, the model can be
strongly conditioned by textures in some situations: for ob-
jects with missing textures, we computed synthetic colors
and patterns.

On ModelNet40 and ShapeNetV2 we added textures
with approaches based on spatial position, this allows to
better recognize edges and surfaces from different perspec-
tives. We discuss these details in the Appendix 4.3. Most of
the meshes found on ShapeNet came with textures. Thus,
taking only the one that had textures, in each test batch
of ShapeNet we selected for each type of object (guitar,
basketball ball,. . . ) 25 random objects of the same cat-
egory. We iterated this procedure overall in the ShapeNet
tests batch.

3GitHub: https://github.com/halixness/point-e

The rendered images are without any reflections and the
light in the scene is fixed. The dimensions of the multi-
ple views generated from ModelNet40 and ShapeNetV2 are
512x512 whereas 256x256 are the ones from ShapeNet with
texture. The number of samples generated from ShapeNet
with textures stands at 625, while 95 are the ones produced
from ModelNet40 + ShapeNetV2 without textures.

3.2. Metrics

We focused on evaluating the multi-view model with
patch concatenation and the one with stochastic condition-
ing compared to the single-view version with these well-
known metrics.

Point cloud divergences: Firstly, we compute the ma-
trix of the pairwise euclidean distance between points in
the same point cloud. Next, we determine the divergence
through the Wasserstein Distance [12].

Batched P-IS: The acronym stands for Point cloud In-
ception Score [1] . Based on the inception classifier Point-
Net++ [11] trained by the authors of Point-e [4] on Model-
Net40. Thus, we use the likelihoods provided by this model
to compute the inception score [14] over a batch of point
clouds generated by our multi-view model. The score is
computed as the exponential of the KL divergence.

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
The P-IS is maximized when the distribution of the gen-

erated object is close to the distribution of a label and differ
from the other labels.

Batched P-FID: P-FID is computed from the authors of
the Point-e paper through extracting the feature from the
last layer before the final ReLU activation. Given those ex-
tracted features they compute the Fréchet distance [8] be-
tween the generated distribution and the ground truth distri-
bution. According to the original intuition, we compute it



Figure 3. Illustrated in the figure it is shown that even if the point
cloud is translated, rotated or scaled in a different size the pat-
tern on the normalized distance distribution still looks exactly the
same.

on a random batch of generated samples for sixty iterations.
However, our results on P-FID were obtained without ex-
tracting features from the last layer.

Batched Chamfer Distance: For each point in clouds
S1 and S2, we search the closest point in the other cloud and
we perform the sum squared over all the minimum distances
between the points [18]. The one below is the mathematical
formulation:

dCD (S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

∥x−y∥2+
1

|S2|
∑
y∈S2

min
x∈S1

∥y−x∥2

This metric has been computed over random batches of
generated samples for sixty iterations.

Furthermore, we develop a novel metric to evaluate the
generated point cloud. Given a ground truth point cloud
GT, we measure the distances pairwise between the point in
the point cloud. Then we iterate the same process over the
generated point cloud. Therefore, we store those measures
in the pairwise distance matrix. Those two matrices encode
in the columns the details related to the points and where
each point is positioned with respect to the other points in
the same cloud (Figure 3). Normalizing the distances we
switch this set of multidimensional observations into a dis-
tribution. When the set of observed distances is similar, the
two distributions should overlap. Hence, when the overlap
between distributions is pronounced, the point clouds 3Ds
also exhibit the same pattern. Through this approach we
compare the generated point cloud with ground truth or the
multi-view with the single-view.

3.3. Results

We validated the multi-view, patch concatenation vari-
ant of Point-E with the standard model conditioned on a
single image. We used the same pre-trained weights (Point-
E 300M) for both model instances. The metrics have been
computed on the evaluations sets with synthetic object tex-
tures.

In Figure 4, we report the variance on divergence in
point clouds generated with multi-view with patch concate-
nation and single-view compared with ground truth on the
textureless dataset. The white dots in the box plots represent
the outliers. The multi-view model with patch concatena-
tion does not seem to significantly improve convergence to-
wards the ground truth mesh, in a matter of structure. How-
ever, the P-IS score improves as multiple views condition
the model: this shows better shape consistency with seman-
tic features. We provide an example in the Appendix Figure
19.

The variance on the other metrics discussed can be found
in Figure 20 in the Appendix. The results over PIS score
and Chamfer distance show possible gains with multi-view
conditioning: with respect to problematic single-views as
shown in 10, better 3d consistency and convergence with
the ground truth cloud is achieved. In Figure 22b 22c we
can observe that the overlap is better as with multi-view we
obtain a more accurate version of the ground truth object.

To validate the model with stochastic conditioning, we
generated 650 point clouds with the single-view model and
with the model with stochastic conditioning from the views
with textures generated by ShapeNet. We can see in Figure
5 and Figure 6 that the point clouds generated with stochas-
tic conditioning are better compared to the once generated
from a single view.

3.3.1 Limitations

The experiments have been conducted using the pre-trained
300M model. We would expect equal or better results with
the pre-trained 1B model. There is the possibility that the
results might be biased: because we tested the model with
only a few objects (one hundred) or because of imperfec-
tions dictated by differential poses of the imported objects
(ex. Figure 19). Moreover, we must consider that these tests
were performed on datasets with synthetic textures. There-
fore we expect further improvements with rendered views
of correctly colored and contoured objects (as seen in Fig-
ure 21). We recognize a computational inefficiency in con-
ditioning with a concatenation of image patches, as the time
of inference increases. With stochastic conditioning, the in-
ference cost is unchanged, although more denoising steps
may be required to attend to all conditioning views suffi-
ciently.

3.4. Conclusion

Text-to-3d generation with single synthetic images
leaves room for large improvement. For complex shapes,
learning object priors with scarce input data can result in ap-
proximate outcomes. For better 3d consistency, we propose
two variants of the denoising diffusion process with further
experiments to conduct. Metrics based on neural feature ex-



Figure 4. This plot shows the divergence computed based on the Wasserstein distance. Specifically with multi-view with patch concatena-
tion and single-view over the textureless dataset ModelNet and ShapeNetV2..

Figure 5. This boxplot shows the variance on divergence computed
on the generated clouds on ShapeNet with textures with multi-
view with stochastic conditioning and single-view compared with
ground truth. The white circles are the outliers.

tractors can result limiting, thus we recognize the necessity
for more reliable benchmarks. With patch concatenation,
multi-view we observe in specific scenarios equal or better
results results compared to the single view version, at the
cost of higher computational complexity (potentially solv-
able with a tradeoff in timesteps/conditioning data with the
stochastic conditioning variant (Figure 22).
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Michael Zollhöfer Vincent Sitzmann, Justus Thies.
Deepvoxels: Learning persistent 3d feature embeddings.
https://arxiv.org/abs/1812.01024, 2018. 1

[18] Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei
Liu, and Dahua Lin. Density-aware chamfer distance as a
comprehensive metric for point cloud completion. CoRR,
abs/2111.12702, 2021. 4

[19] Chenyang Huang Masood Dehghan Osmar R. Zaiane Mar-
tin Jagersand Xuebin Qin, Zichen Zhang. U2-net: Going
deeper with nested u-structure for salient object detection.
https://arxiv.org/abs/2005.09007, 2020. 2

https://arxiv.org/abs/2210.04628
https://arxiv.org/abs/2210.04628
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/1812.03828
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://stability.ai/blog/stable-diffusion-v2-release
https://stability.ai/blog/stable-diffusion-v2-release
https://arxiv.org/abs/1812.01024
https://arxiv.org/abs/2005.09007


4. Appendix
4.1. Single view text-to-3d with Stable Diffusion 2

Figure 7. ”a blue coffee mug, full body centered camera view,
blender render, high resolution, standard light, no reflections” (Sta-
ble Diffusion 2)

Figure 8. Point cloud generated from 7. The occluded part of the
object results in sparse points.

Figure 9. Top view photo of a gaming chair.
Figure 10. Point cloud generated from 9. From the provided view
it is not possible to correctly estimate height and (partial) color of
the object.



4.2. Multi view text-to-3d with Stable Diffusion 2

Figure 11. ”a hamburger, full body frontal/bottom/top/left cam-
era view, blender render, high resolution, standard light, no reflec-
tions” (Stable Diffusion 2)

Figure 12. Point cloud generated from 11

Figure 13. Rendered views of Pikachu (fantasy character) with
Blender.

Figure 14. Point cloud generated from the top-left view in 13



Figure 15. Multi-view, patch concatenation 3D reconstruction
from 13. Figure 16. Multi-view, stochastic conditioning 3D reconstruction

from 13.

Figure 17. Rendered views from SRNCars with PyTorch3D.
Figure 18. Multi-view, patch concatenation 3D reconstruction
from 17.



Figure 19. Dissimilar views of the same object.

4.3. Texture tinge



Figure 20. This plot shows the variance over the P-FID, the P-IS and the Chamfer distance. Specifically with multi-view with patch
concatenation and single-view over the dataset with synthetic textures ModelNet and ShapeNetV2.

Figure 21. Gaming chair.



Figure 22. Show the distribution of the pairwise distances matrix of points in the same poincloud: (a) Multi-view with stochastic condi-
tioning, (b) Multi-view with patch concatenation, (c) Single-view.
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