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Abstract—In Reinforcement Learning literature, Social
Dilemma Games model social dynamics to test multiple learning
agents. In neural methods for Multi-Agent Reinforcement Learn-
ing (MARL), techniques such as direct punishment or shared
experience actor-critic have been proposed to understand the
emergence of cooperation [1][2]; however, behavior in biological
systems could be influenced by intrinsic factors: a living being is
driven by needs and limits such as aging, inherited genetic traits,
starvation. This study introduces evolutionary and demographic
dynamics to social dilemma games: with notions from crowd
behavior and collective intelligence, we simulate learning through
mating and mutation under different conditions and look for the
presence of emerging strategies.

Index Terms—evolution, social dilemma, cooperation, emer-
gence

I. INTRODUCTION

SOCIAL dilemma games involve multiple agents that act
by balancing cooperation and competition. Depending on

the conditions of the environment, prioritizing one behaviour
or the other allows to maximize either a single-agent or a col-
lective reward. From an evolutionary perspective, these factors
can have an impact on different time spans: ”selfish” players
ensure their own survival while threatening the other players’
one, only the fittest will generate the next offspring; contrarily,
”cooperative” players aim at maximizing the outcomes for the
entire group, which translates into diversity and homogenized
rewards. These scenarios lead to populations with different
distributions of ages and returns.
The goal of this study is to investigate the conditions under
which collaboration emerges during evolution in a dynamic
environment: level-based foraging (LBF), a free-roaming game
where agents collect items with varying levels of difficulty.
Different conditions, depending on food abundance and pop-
ulation density, are tested on 50 evolving individuals. This is
based on the experimental framework set by Christianos, et al.
[1].

II. ENVIRONMENT & ASSUMPTIONS

Multi-agent Markov Games. The interaction
mechanisms in LBF are modeled as a Markov Game
M, defined by a finite set of states S over an environment
matrix E ∈ RM×M ; perception of the environment
for each agent is modeled with an observation function
O : S × {1, ..., Np} → R3×N×N , with Np the amount
of players, o ∈ O a 3 × N × N observation tensor
accounting for the local neighborhoods of players and items,
respectively1; state transitions are modeled with the function

T : S × A1 × ... × Ap → ∆(S) with ∆(S) a discrete
distribution over the resulting states, Ap the set of allowable
actions for each p player; state outcomes are represented by the
agent reward function rp : S×A1×...×Ap → R. Each player
is represented by a policy function πp : O(S) → a ∈ Ap that
given a partial observation, it returns one of the allowable
actions.

Level-based foraging (LBF). The environment chosen
for this study was introduced by Christianos et al. [1] for
multi-agent reinforcement learning (MARL). The game is
described by the following conditions:

• Agents Pi and items Fi are scattered around the map with
a random level.

• An item is successfully collected if the sum of the levels
of the involved agents is equal or greater than the item’s
level ∈ [1, 10]1.

• When an item is collected, the individual reward is equal
to the level of the item divided by the normalized level
of each agent involved (relative contribution).

• Possible values for an action a ∈ Ap are in [0, 5],
corresponding to: do nothing, north, south, west, east,
load. The movements have 1 tile of stride.

• A partial observation O(S) is a tensor composed of two
RN×N matrices centered on the player’s position, where
N = 2s + 1 and s is the directional range of sight (in
tiles). The first matrix is populated with values in [1, 10]1,
where each cell is a player level, if present; similarly, the
second matrix is populated with the same range of values
corresponding to the presence of food items; the third
matrix concerns binary accessibility values to access the
tiles.

• In this study, each agent’s sight reaches 20 tiles per
direction (north, east, south, west). To reduce the amount
of input variables, a mean pooling operator is applied
direction-wise with a downsampling factor of 5. This
results in partial observations O(S) ∈ R2×9×9, that is
162 inputs.

The game is not trivial: agents have to balance between
cooperation and competition to both increase the individual
reward and to cooperate when they approach items difficult
to collect. The presence of multiple agents in a region
induces the creation of strategies, thus the choice of
who to compete/collaborate with. We test these behaviors by
simulating evolution different environments of two main types:

1Design choice for this study.
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natural, with random food items levels; forced cooperation,
with maximum food items levels. We examine the distribution
of the average rewards as well as the portion of collected food.

Social pressure. Edward T. Hall [3] denoted with Proxemics
the effects of population density in behaviour, communication
and social interaction. Distances between individuals influence
the perception of the relationships among them. Three regions
of a subject’s surrounding space are identified:

• Personal space: between 0.46m and 1.22m. The violation
of this boundary is cause for the individual’s stress.

• Social space: between 1.22m and 3.7m. Reserved to
individuals the subject is interacting with, a small group
of peers.

• Public space: beyond 3.7m. Generally regards large au-
diences and open crowded spaces.

The absolute distance Da in meters is converted to the relative
distance Dr in units, by assuming a subject size Ds = 55cm.

Dr =
Da

Ds
(1)

Hall’s distances result in: personal space ∈ (0.83, 2.22],
social distance ∈ (2.22, 6.73], public distance ∈ (6.73,+∞).
In level-based foraging, a unit is one tile.

The density d, measured in players/tile is given by dividing
the number of players spawned Np by the total amount of tiles
(positions in the environment) M ×M :

d =
Np

M ×M
(2)

In this study, we use Proxemics to build the social pressure
scale: it measures population density with a sensitivity dictated
by Hall’s distances, which allows to describe the level of social
pressure. We take the lower bound of Hall’s social distance
in relative units: it is rounded to 2 tiles of distance in all
directions, resulting in a 5x5 squared area. The density of
this space corresponds to d = 1

5×5 = 0.04 players/tile. This
denotes the neutral level of social pressure (SPL).

Level Condition Players/tile
1 Sparse x ≤ 0.02
2 Neutral 0.02 < x ≤ 0.04
3 Stressful x > 0.04

TABLE I: Social pressure levels: players per tile ratio.

Food abundance. The experimental settings of the environ-
ment used by Christianos et al. [1] are considered to derive
three food abundance levels (FAL).

Level Condition Food/person
1 Scarcity x < 1
2 Neutral x = 1
3 Abundance x ≥ 1

TABLE II: Food abundance levels: items per person ratio.

III. METHODOLOGY

In this study the process of evolution of individuals is
simulated with Evolutionary Algorithms (EA): a family of
meta-heuristics for single and multiple objective optimization.
In the context of social dilemma games, EAs simulate
the evolution of a population of individuals given the
expectation of the cumulate episode reward as fitness function
(to maximize). Evolution and Reinforcement learning are
conciliated with the use of Evolutionary Decision Trees [4][5],
whose leaves are trained with E-decay reinforcement learning.

Decision tree policies. Each player is a policy function
πp, modeled with a Decision Tree (DT): the input state is a
flattened observation tensor O(S) ∈ R162; through a series
of tests (DT nodes), given an input state the tree is traversed
down to a specific leaf, which associates the available state
actions with a predicted reward. Each DT node corresponds
to a linear decision boundary in the feature space parallel
or oblique1 to the axis. Moreover, DTs with a contained
branching factor and depth are human-interpretable [5]: this
could provide insights on the agent’s behavior.

Evolutionary Algorithms. EAs are iterative procedures
that evolve a population of individuals through selection,
mutation, crossover, replacement, fitness evaluation. In the
context of Evolutionary DTs, each player is an individual
Pi ∈ Rk of the population and it is represented by a sequence
of k genes, the genome or genotype. In this implementation,
the genome is a list of integer values to translate into the
phenotype: a series of if-then-else instructions generated
according to the production rules of a defined grammar, as
implemented by Custode, Iacca [5]. We adopt the following
design decisions:

• A fixed population size of λ = 50.
• Tournament selection with a pool size of 2.
• For each environmental condition, the population is

evolved for 50 generations.
• We apply uniform crossover with indipendent gene prob-

ability of 0.4 and general crossover probability of 0.5.
• A mutation probability of 0.9 for each gene.
• A genotype of length |k| = 300.
• The fitness function for each individual is the average

cumulative return over all the episodes. The generation
diversity is a matrix of pairwise Euclidean distances.

Reinforcement Learning. The DT leaves are trained a
posteriori with E-greedy Q-Learning [6] to associate a reward
to each action in a given state. For each generation, the
population interacts with a randomly generated environment
for Nepisodes iterations, each Nsteps long. Under this con-
dition, the optimal policy consists in choosing the action
that maximizes the reward. However, to nudge exploration
a random action can be sampled instead, with probability
ϵ ∈ [0, 1]. We use the configuration:

• ϵ = 0.25, constant over time.
• A learning rate α = auto.
• Nepisodes = 1000, Nsteps = 200.



PROJECT REPORT. BIO-INSPIRED ARTIFICIAL INTELLIGENCE, SPRING 2023 3

IV. EXPERIMENTS

The original environments to evaluate RL agents in LBF
[1] are considered as base for this study. We further introduce
new parameters: the social pressure level (SPL) and the food
abundance level (FAL). NP denotes the number of players,
while NF the amount of food items.

Ref. Tiles NP NF NP /tile NP /food
a 12x12 2 1 0.014 2
b 10x10 3 3 0.030 1
c 15x15 3 4 0.013 0.75
d 8x8 2 2 0.031 1

TABLE III: Experimental conditions from Christianos et al.[1]

We take in consideration the three most distinct cases (a, b,
c), for which we compute the Np/tile ratio and keep it fixed
while scaling the environment matrix (tiles) to Np = 50:

Ref. Tiles NP NF NP /tile NP /food SPL FAL
a 60x60 50 25 0.014 2 1 1
b 41x41 50 50 0.030 1 2 2
c 62x62 50 67 0.013 0.75 1 3
e 35x35 50 25 0.040 2 2-3 1
f 25x25 50 25 0.080 2 3 1

TABLE IV: Extended experimental conditions with the cor-
responding levels of social pressure and food abundance.

Conditions (e, f ) have been introduced to experiment with
a higher level of social pressure. For each condition, two types
of environments are conducted:

• Natural setting (N): spawned food items have random
levels level(Pi) ∈ [0, 10], up to the max player level.

• Forced cooperation (FC): the levels of the spawned food
items are fixed to the max player level, level(Pi) = 10.
This forces multiple players to sum their contribution and
collect items.
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Fig. 1: Expected rewards at learning time for 10 experimental
conditions over 50 generations.

V. RESULTS

Figure 1 reports the learning curves of populations in a, b,
c, e, f without (N) and with forced cooperation (FC, ”coop”).
Each population is evaluated for 10 episodes, 200 steps each.
Two metrics are considered: Cfood, the fraction of collected
food; r̄, the average episode reward over the individuals; mean
and standard deviation of the scores over the episodes are
reported in Table V.

Ref. Type Cfood r̄
a N 0.3840 ± 0.1061 0.0073 ± 0.0021
b N 0.5020 ± 0.0878 0.0095 ± 0.0018
c N 0.3448 ± 0.0679 0.0066 ± 0.0014
e N 0.5640 ± 0.1193 0.0110 ± 0.0027
f N 0.7720 ± 0.0781 0.0149 ± 0.0018
a FC 0.1720 ± 0.0840 0.0034 ± 0.0017
b FC 0.2560 ± 0.0320 0.0051 ± 0.0006
c FC 0.1403 ± 0.0373 0.0028 ± 0.0007
e FC 0.3480 ± 0.1132 0.0070 ± 0.0023
f FC 0.5040 ± 0.1120 0.0101 ± 0.0022

TABLE V: Average population returns in collected food and
rewards over 10× 200 steps.

With or without the enforcement of cooperation, we observe
the highest Cfood and r̄ are achieved in e and f, these scenarios
feature high social pressure (SPL ≥ 2) and food scarcity (FAL
= 1). Condition b follows with neutral SPL and FAL. This
favors our hypothesis: competition due to high population
density and limited items nudges agents to collect more food
within the same timespan.
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Fig. 2: Expected episode reward against diversity in (f ), with
and without forced collaboration (FC). Diversity is smoothed
with a moving average of 5 steps.

In Figure 2, we focus on condition (f ) to observe the
relationship between diversity and fitness: when the former
increases, the population encodes a larger variety of sub-
solutions that can be exploited, which leads to significant
improvements in returns. The population diversity achieves a
peak around generation 10, where the average reward starts to
saturate. Subsequently, as fitness achieves a plateau we observe
an alternation of peaks and valleys in diversity, with an overall
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decreasing trend, which could be a symptom of premature
convergence. This phenomenon may be caused by multiple
factors: from the evolutionary perspective, longer genomes
and more sophisticated crossover operators could be tested;
overall, in condition (f ) the agents explore the environment
for 10.000.000 steps and collect 77.20± 7.81% of food items
within a generation, this is comparable with the performance
achieved Shared Experience Actor-Critic [1].
Forced collaboration lowers the returns in all the experiments:
with a reduced ability to collect any item on their own, rewards
are more sparse; this is reflected in a less steep learning curve.
A peak in diversity is followed by the achievement of a plateau
in returns; with respect to the (N) natural condition, by the end
of the evolutionary process individuals keep a higher variety
(Figure 2), which supports our hypotheses on cooperation and
genetic preservation.
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Fig. 3: Distribution of returns over individuals, sorted by age
in conditions f(N) and f(FC). Horizontal and vertical lines
correspond to the axis averages over the population.

Finally, in condition (f ) we compute the genetic age of
each individual in the final population: in inverse chronological
order, we count the amount of generations in sequence where
the genome appears (Figure 3); individuals and the respective
avg. episode reward are sorted by age. In the natural setting,
outliers are mostly recent individuals with competitive behav-
iors, this is supported also by the width of the distribution and
a concentration of older individuals below the average return
value. Conversely, in the collaborative setting the distribution
of returns is concentrated: at the cost of an overall smaller
return, the majority of the population achieves similar rewards;
fluctuations could be explained also by the randomness of the
player levels, which are proportional to the return.

VI. DISCUSSION

One major challenge in this project was the computational
cost: the limited budget to test large-scale environments re-
quired finding a tradeoff between the length of the experiments
(in generations of evolution, episodes, steps) and the variety
of environmental conditions (social pressure, food scarcity,

forced collaboration and natural competition). Both dimen-
sions were crucial in obtaining good conditions for learning.
Firstly, we have reduced the complexity of the inputs with
a mean pooling operator: the agent perceives in a discretely
large neighborhood O(S) ∈ R3×41×41, but these information
are summarized by computing the direction-wise mean each 5
tiles, leading to O(S) ∈ R2×9×9– 2 channels are kept as the
last one, regarding physical accessibilities, is discarded.

Originally, the experiments conducted by Christianos et
al. [1] involved up to 3 agents (an insufficient number from an
evolutionary perspective) trained for over 30,000,000 iterations
(unfeasible for this study). By formalizing the environmental
conditions with Proxemics, we scaled local social dynamics to
a population of 50 individuals. We found Nepisodes ≥ 1000 to
be an acceptable lower bound for the training environments;
we extended Nsteps from originally 25 to 200 in order to
allow further exploration of the scaled environment space and
strategies in a wider time span. This resulted in an increased
rate of collected food wrt. experiments with more episodes
(3000) and less steps (25).

We experienced the known problem of sparse rewards:
within an episode, few actions lead to rewards, which is
linked to small average episode returns encountered in all the
experiments. We adopted two methods to tackle this issue:
with evolution, we set a high mutation probability (e.g. 0.8)
and a small tournament pool size (e.g. 2) in order to push the
exploration of behaviors; with RL, we set a higher amount of
steps per episodes to allow agents to accumulate more rewards
within an episode.

We suspect some limitations in our approach: in all of
our experiments, we found no significant improvements in
returns after 10-15 generations, suggesting further exploration
could be necessary by introducing a decaying ϵ parameter
(initial ”warmup” with more random actions), by increasing
the amount of episodes or by adopting Evolutionary Strategies
[7].

Finally, from our experiments we hypothesize that coop-
erative behavior can be learned through evolution, especially
under extreme environmental conditions. This comes at the
cost of overall population returns, while it can ensure higher
diversity whose effects in the longer term could be further
investigated in more complex social dilemmas.
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critic for multi-agent reinforcement learning,” 2021.

[2] M. M. Nayana Dasgupta, “Investigating the impact of direct punishment
on the emergence of cooperation in multi-agent reinforcement learning
systems,” 2023.

[3] B. B. P. B. A. R. D. J. M. D. M. S. E. J. L. F. D. H. S. T. K. W. L. B.
F. L. S. J. J. E. M. D. S. M. G. B. M. H. B. S. G. L. T. Edward T. Hall,
Ray L. Birdwhistell and A. P. Vayda, “Proxemics,” 1968.

[4] S. N. L. Z. Yashesh Dhebar, Kalyanmoy Deb and D. Filev, “Interpretable-
ai policies using evolutionary nonlinear decision trees for discrete action
systems.” 2020.

[5] G. I. Leonardo Lucio Custode, “Interpretable ai for policy-making in
pandemics,” 2022.

[6] C. J. C. H. Watkins, “Learning from delayed rewards.” 1989.
[7] X. C. S. S. I. S. Tim Salimans, Jonathan Ho, “Evolution strategies as a

scalable alternative to reinforcement learning,” 2017.


