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Abstract

A recent paradigm shift in natural language processing allowed to successfully apply

language models in multiple fields e.g. in robotics, computational biology and

automated vision. The possibility for these algorithms to achieve or surpass human

performance further pushed the question: to what extent do they process information

similarly to the human brain? Studies in neuroscience and AI have been conducted in

an isolated way, only in the recent years brain activity patterns have been shown to

correlate with computations in neural networks. This article firstly aims at reviewing

the most crucial findings, suggesting that studying the behavior of neural networks

helps understanding more the brain. Further discussion and experiments are dedicated

to testing the knowledge of language models: what features drives their understanding,

how they perform predictions and to what extent they can reason and learn to execute

algorithms. Findings suggest that neural networks can learn abstract concepts

applicable to problems, but their logical abilities are limited either by the training

procedure or the design of the network; such limitations may underlie divergences with

the human brain.
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Computational representations of language

Language is a human construct used to convey meaning. In computational

linguistics theory, Chomsky (1956) defines language as a set of units of meaning, e.g.

the words in a vocabulary, and rules to compose them into sequences. Understanding

and modeling the criteria to construct language sentences has been a major question in

research– a puzzling finding is that the distribution of human spoken language

approximately follows a simple mathematical relation, namely the Zipf’s Power Law. In

a Zipfian distribution, given words ranked in descending order by frequency, the first

term occurs n-times more frequently than the n-th most common term. As a result,

there is a concentration of few highly occurring words against a large set of sparse

terms: functional words such as articles or prepositions fall in the first category, e.g.

"the" is the most frequent, accounting for 7% of word occurrencies in the Brown Corpus

of American English text; content words such as "democracy" belong to the latter, as

reported by Stephen and Ramazan (2010). The reason why a complex process such as

speech follows such simple mathematical rule has been a subject of research for the past

70 years.

Figure 0. Zipf law on several languages, Wikipedia (2023).
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Distributional semantics and sparse representations

The use of word frequency to extract features from language is at the base of

computational models for linguistics. Arguably, the simplest technique to represent a

body of text is to count the words occurring in it: a bag of words (BoW) consists in

an array of word counts for a specific document, where the cardinality of this sequence

(the "embedding") corresponds to the size of a universal vocabulary.

sentence 1: "Paris is in France"

sentence 2: "Rome is in Italy"

BoW 1: {"Rome": 0, "Paris": 1, "is": 1, "in": 1, "France": 1, "Italy": 0}

BoW 2: {"Rome": 1, "Paris": 0, "is": 1, "in": 1, "France": 0, "Italy": 1}

Example 1. Bag of words encoding for two example sentences.

Similarly, words can be represented by a vector of co-occurrence counts with

respect to all the other terms in the vocabulary: this is defined as the term-term matrix

or co-occurrence matrix. While both techniques have been applied in research with

success, major problems lead to a paradigm shift: document/word representations are

highly dimensional and vocabulary-specific, such vectors have been found to be highly

sparse and thus inefficient for computation.

Rome Paris is in France Italy

Rome 1 0 1 0 0 0

Paris 0 1 1 0 0 0

is 0 0 1 1 0 0

in 0 0 0 1 1 1

France 0 0 0 0 1 0

Italy 0 0 0 0 0 1

Table 1. Co-occurrence matrix representation of the sentences from Example 1.

The above mentioned approach can be generalized in probability theory by
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considering a language sentence as a stochastic process with words as random variables,

the probability for a sequence to occur is modeled by the chain rule:

p(w1, ..., wn) =
n∏
i

p(wi|w1,...,i−1) (1)

That is the probability of a word to follow in a sentence depends by the

preceeding ones. This concept can be simplified with the Markov assumption: the

conditioning sequence for a word is only a portion (the latest) of the preceeding terms.

Words co-occurrence can be thus seen as a special case in which the probability of a

word wi is governed by the preceeding one wj, a cell entry cij corresponds to the count

for the row word to preceed the column word; the probability for wi to follow wj, a

bigram, is defined as the fraction of occurrences of the two words over the occurrences

of the preceding word:

p(wi|wj) = cij

cj

(2)

This approach to language is defined as language modeling: human language is

assumed to follow a distribution that governs the sequences of function and content

words. More recent research in statistical learning and artificial intelligence propose the

use of neural networks as non-parametric models for language modeling. At the center

of this paradigm shift is the idea to move from discrete to continuous and compressed

word representations: terms are mapped to vectors in a highly-dimensional geometrical

space, which are subject to algebraic properties.

Neural networks and continuous embeddings

Mikolov, Chen, Corrado, and Dean (2013) implement the idea of words as

geometrical points in what has been considered a turning point in natural language

processing: a neural network is employed to predict the probability of co-occurrence

between two words within a context window. Word embeddings consist in the vectors of

logits extracted from the penultimate layer of the network, before predicting the single

probability value; vectors with fixed cardinality and continuous values represent words
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in a geometrical space. The authors show interesting properties in linearly composing

these representations, e.g. with a mathematical analogy they compose high level

concepts to infer new words.

Relationship Example 1 Example 2 Example 3

France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee

Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter

Table 2. Examples extracted from inference with word2vec from Mikolov et al. (2013).

It is fundamental to mention that with this approach the representation for a

word is unique and it does not depend on the surrounding terms. This clashes with the

concept of polysemy: a word can have multiple meanings depending on the context

where it appears; word disambiguation is a research problem in computational

linguistics, Britton (1978) estimates at least 32% of words used in the English language

are ambiguous.

Contextualized representations and language modeling

Figure 1. Visualization of ELMO word embeddings from Chiu and Baker (2020).

From bigrams we can expand language modeling to longer sequences, n-grams,

and model the probability according to Equation 1. Recurrent neural networks (RNN),

such as long-short term memories (LSTM) from Hochreiter and Schmidhuber (1997),

can be employed to process word sequences: once defined a vocabulary, words are
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identified with an id and projected to highly dimensional embedding vectors; the

embeddings are fed in sequence to a RNN cell that updates an internal state, which at

the end of the sequence will encode the sentence context. Peters et al. (2018) builds

upon RNNs an architecture that processes text sequences forward and backwards

(bi-directional LSTM) with stacked layers: a word embedding wi is computed as the

linear combination of the RNN cell hidden states at time i over the stack; the network

is trained to perform language modeling and this approach is named ELMO

(Embeddings from Language Models).

Recurrent neural networks present limitations for long sequences: a fixed-size

vector cannot fully encode representations of long bodies of text; moreover, training is

slow as words are processed in sequence and long sequences affect the quality of

learning ("vanishing gradients"), as shown by Pascanu, Mikolov, and Bengio (2012).

More recently, a novel architecture allowing processing sequence has replaced RNNs:

transformers, introduced by Vaswani et al. (2017). Attention is the core computational

block: each word embedding is projected into a query, a key, a value and matched to

any other word in the input sequence via query-key similarity; the output sequence is

represented by the word values weighted by the word by word similarities. This simple

approach overcomes the problem of modeling long sequence dependencies, Dosovitskiy

et al. (2020) showed this successfully applies to visual signals as well.

In correspondence to ELMO, Bidirectional Transformers in Language or BERT,

Devlin, Chang, Lee, and Toutanova (2018), have been proposed to understand and

encode language sequences using the above mentioned attention blocks. The training

objective is masked language modeling: predicting the missing words in a sentence;

words are initially converted to tokens ("word-pieces") and projected to embeddings as

in RNNs.
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Figure 2. BERT pre-training with masked language modeling and task specific

fine-tuning, Devlin et al. (2018).

To generate language sentences such as answers, an auto-regressive variant of

transformer is used: Generative Pre-training Transformers or GPT, introduced by

Radford, Narasimhan, Salimans, and Sutskever (2018). As in RNNs, the training

objective consists in predicting the next most likely word occurring in a sequence, an

attention mask is used for the attention blocks to attend only the context tokens.

In the attempt to map LM embeddings to brain recordings in processing spoken

or written words, Hollenstein, de la Torre, Langer, and Zhang (2019) and Caucheteux

and King (2022) report better matching for transformer-based architectures over RNNs

and word2vec. I thus focus on studying BERT and GPT to answer the question: to

what extent do artificial word representation resemble to brain activity? If present,

what linguistic features rule this analogy?

Mapping linguistic representations to brain activity

A major question in neuroscience is how conceptual knowledge is encoded in the

brain, how it is organized and how it constructs meaning. Neuroscientists rely on brain

imaging techniques to capture mental states: functional magnetic resonance imaging

(fMRI) allows to capture cerebral blood flows, which in high concentrations represent

intense neural activity. Ishai, Ungerleider, Martin, Schouten, and Haxby (1999) and

Haxby et al. (2001) show that spatial patterns in fMRI images can be matched with

visual inputs such as objects and faces. In researching representations for the meaning
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of words, psychologists focused on lists of terms associated by individuals; linguists

associated semantic roles to verbs and nouns; alternatively, computational linguists

claimed that word meaning is best captured by the distribution of co-occurring words.

Mitchell et al. (2008) takes from the statistical definition of word meaning: given a

trillion-words text corpus, nouns are represented by a vector of co-occurrence counts

with respect to the finite set of semantic features (verbs):

“see”, “hear”, “listen”, “taste”, “smell”, “eat”, “touch”, “rub”, “lift”,

“manipulate”, “run”, “push”, “fill”, “move”, “ride”, “say”, “fear”, “open”,

“approach”, “near”, “enter”, “drive”, “wear”, “break”, “clean”.

"bear" = {"see": 0.52, "hear": 0.52, "listen": 0.486, "taste": 0.214, ...}

.

A predictive model is proposed to learn fMRI patterns of nouns under two

assumptions: semantic features of a word are reflected in its use in large bodies of text;

the relationship between word vectors and brain activation patterns is assumed to be

linear, which is consistent with the frequent use of linear models in analyzing fMRI

activity, Friston (1995). Neural activity in the brain is approximated by a matrix of

unitary locations named voxels v: in this study, the activation of an area yv is modeled

as the linear combination of semantic features fi(w) for an input word w, where the

contribution cvi of each feature i is learned through a regression problem:

yv = Σn
i cvifi(w) (3)

fMRI data is collected over 9 subjects: 60 word-image pairs are presented to each

subject for six repetitions (or epochs); as activity for over 20.000 voxels is recorded, the

authors select the 500 most "stable" ones with the lowest variance over epochs. The

model is trained on 58 samples and evaluated on the two held-out ones for all the

possible combinations. To compute the accuracy, the model predicts voxel activity for

the two unseen words: the obtained activations (e.g. p1 for word w1) shall correspond
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by cosine similarity ("cosim") to the ground truth (e.g. i1) measurement rather than the

other test sample (e.g. i2), such that:

cosim(p1, i1) + cosim(p2, i2) > cosim(p1, i2) + cosim(p2, i1) (4)

As a result, a mean accuracy of 0.77 over the 9 subjects is achieved. Cortical areas

where activity has been predicted with the highest accuracy involve mainly the left

inferior, temporal, motor cortex, inferior frontal, orbital frontal and occipital cortex;

this is consistent with the general view that the left hemisphere is highly employed in

semantic representation. Above-chance accuracies are obtained also by testing the

model to predict the activity for words that belong to semantic categories excluded at

training time (e.g. animals, mean accuracy: 0.70), or semantically similar words whose

fMRI activity can be difficult to distinguish (mean accuracy: 0.62). Eventually, the

distribution of learned weights for specific semantic features over the voxel space reveal

analogies in line with theory (Figure 3): the fMRI image for "push" shows strong

activations in the right postcentral gyrus, related to the coordination of complex

movements; strong activations in the image for "eat" are found in the opercular cortex,

which is assumed to be associated with the perception of taste.

Figure 3. Spatial distribution of weights for semantic features "eat", "run", "push" from

Mitchell et al. (2008).

This study sheds light on new ways to study brain activity: firstly, computational

language representations can indeed be mapped to brain recordings with an acceptable
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level of generalization; predicted fMRI images for the same words are consistent over

multiple individuals, suggesting that brain responses to stimuli can arguably be general

to groups of subjects; neural representations for nouns are partially grounded by

sensory-motor features.

Basing on this approach, I have firstly reproduced the results obtained by Mitchell

et al. (2008) and subsequently tested different computational word representations to

predict the same fMRI images: non contextualized embeddings with Global Vectors for

Word Representation or GloVe, from Pennington, Socher, and Manning (2014), based

on matrix factorization and similar to word2vec; non contextualized BERT embeddings

of one-word sequences; for context-based BERT embeddings, given 1.000 context

sentences per word I consider the dominant meaning (the centroid of the largest cluster

from K-means) and the average context vector, suggested by Chersoni, Santus, Huang,

and Lenci (2021).

Embedding type Accuracy (↑)

25 semantic features 0, 78 ± 0, 41

GloVe 0, 71 ± 0, 46

BERT (no context) 0, 68 ± 0, 47

BERT (avg. context) 0, 55 ± 0, 44

BERT (dominant meaning) 0, 71 ± 0, 45

random vectors 0, 32 ± 0, 47

Table 3. Mean accuracy scores for different word embeddings in predicting fMRI

images for 2 held-out words.

These experiments suggest that computational word embeddings successfully map

to fMRI images with accuracy above random level. I hypothesize the differences in

performance could be caused by the source of grounding: Mitchell et al. (2008) pair

pictures with words, while the only modality used to train GloVe or BERT is text;

moreover, in this experiment contextualized embeddings are based on 1.000 randomly

sampled paragraphs per word with no guarantees about bias. It is worth noticing that
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the ground truth fMRI images represent single words without a context: this may

justify why contextualized BERT embeddings perform worse than static GloVe vectors;

a higher accuracy is achieved if the contextualized vector is reduced to the word’s

dominant meaning among 1.000 random context sentences.

To further understand word ambiguity, I visualize the meanings of a term given its

representations from 1.000 sentences: contextualized BERT embeddings are clustered

with K-means, with the optimal k ∈ [0, 20] that maximizes the silhouette score (infra

and intra cluster distance). Word representations are extracted from the last layer of a

pre-trained BERT model, as it is supposed to learn abstract, semantic features. To

extract the dominant meaning, the centroid of the largest cluster is considered, e.g.

cluster 1 in the following example. Eventually, the labeled embeddings are projected to

a bi-dimensional feature space with tSNE for visualization. Figure 4 illustrates the

identification of 5 distinguished clusters of meaning for the word "bar", a known

ambiguous term in the English language.

Figure 4. tSNE with d = 2 for 1,000 random context embeddings of the word "bar".
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Predicting brain activity from context sentences with large language models

As anticipated, transformer-based networks motivated a paradigm shift in deep

learning and natural language processing. Radford, Wu, et al. (2018) and Brown et al.

(2020) showed that by scaling the model size and the amount of training data, the

amount of tasks that can be solved and the relative accuracy increase. The underlying

assumption is that the learned representations of language are general enough to detach

from mere language patterns and move to the composition of abstract concepts.

Caucheteux and King (2022) scale up experiments on predicting brain activity in

two ways: by adopting large language models for word representations to analyze their

differences at varying depths of the network; with respect to existing literature, by

collecting brain activity from a larger group of subjects (102) over sequences of 9-15

words. This work reports three main findings: language model activations linearly map

to brain activity associated with reading; activations from the intermediate layers of

transformers best map to brain activity; the quality of such mappings strongly depends

on the level of the model’s language abilities.

Initially, the authors test the hypothesis that neural responses to words and

sentences are consistent across subjects. A linear regression model is trained to predict

the fMRI response y to a word in a held-out subject from the average brain response to

the same stimulus across the other individuals, namely the "template brain activity" x.

A high Pearson R correlation with statistical significance (Wilcoxon two-sided test)

between predicted and truth activity patterns confirm the presence of consistent neural

responses to linguistic stimuli.

Consequently, similarly to Mitchell et al. (2008), a voxel-wise linear regression

model is fitted to predict fMRI activity from computational word representations. Three

types of inputs are tested: "visual" embeddings computed by a Convolutional Neural

Network (CNN), Lecun and Bengio (1995), that recognizes characters from displayed

words; non-contextualized "lexical" embeddings from the projection layer (token id to

vector) at the beginning of a language model; contextualized "compositional"

embeddings computed in the middle attention blocks (1
2th and 3

4th) of the model.
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The learned network to brain mappings provide supporting evidence on the

hierarchy of neural activity in response to language, providing also hints on the factors

determining the algorithm-brain analogy. Firstly, for all the types of representations the

brain score (Pearson’s R correlation between prediction and ground truth) surpasses

chance-level, with peaks in different cortical regions depending on the type of input

(Table 4).

Embedding type Peaking area R Stat. Significance

visual visual cortex (V1) 0.022 ± 0.003 p < 10−11

lexical left superior temporal gyrus 0.052 ± 0.004 p < 10−13

lexical inferior temporal cortex, middle frontal gyrus 0.053 ± 0.003 p < 10−15

contextual superior temporal gyrus 0.012 ± 0.001 p < 10−16

contextual angular gyrus 0.010 ± 0.001 p < 10−16

contextual infero-frontal cortex 0.016 ± 0.001 p < 10−16

contextual dorsolateral prefrontal cortex 0.012 ± 0.001 p < 10−13

Table 4. Peaks of brain scores and statistical significance for word embeddings in cortical

regions, Caucheteux and King (2022).

Middle layer activations sistematically outperform input and output layers,

potentially indicating that representations that best resemble brain activity are to some

extent abstract, but not necessarily they depend on the output layers of the network

and thus on the training task.

With source-localized MEG, activations in the above mentioned cortical regions

are tracked over time: from the presentation of the stimulus, different word

representations best match neural activity at different steps in time, suggesting that

information processing in the brain is distributed across multiple modalities and levels

of abstraction. At 100ms, the brain scores for visual embeddings peak in V1, followed by

word embeddings matching activity in the left posterior fusiform gyrus at around 200ms

and the left temporal and frontal cortices at 400ms; compositional (deep) embeddings

eventually map to activity in multiple bilateral regions at around 1000ms, Figure 5.
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Figure 5. Localized brain scores for fMRI (left) and MEG (right) mappings of visual,

lexical and compositional embeddings from Caucheteux and King (2022).

Eventually, language model performance in the training task is found to highly

correlate with brain scores. The authors test 32 different architectures varying in depth

and size of the embeddings. Early experiments with untrained models (randomly

initialized weights) reveal that their activations can be mapped to brain activity

consistently (Pearson’s R = 0.019 ± 0.001 score, p < 10−16), which suggests that

transformers partially map to brain activity independently of their acquired language

abilities. In models trained to perform language modeling, brain scores strongly

correlate with top-1 accuracy (both for causal or masked language modeling, that is

predicting the next or a missing word), with the highest brain scores achieved by middle

layers (R = 0.81 ± 0.02), followed by output layers (R = 0.63 ± 0.03) and input layers

(R = 0.39 ± 0.03). However, the networks with the best language performance do not

yield the highest brain scores: arguably, this is potentially caused by overfitting to the

training task, which does not capture more complex dynamics of language generation in

the brain, including long-range and hierachical dependencies. Moreover, transformers

differ from their biological equivalent as information flows in one direction (without

recurrent paths) and significantly larger amounts of examples are required to learn the

same ability.
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From this study I derive two further questions to investigate: to test whether

different learning rules can improve algorithmic convergence to brains in language

processing; to verify if contextualized embeddings may hold representations reflected in

cortical areas dedicated to abstract reasoning.

Abstraction I: modelling brain representations of abstract concepts

Kaiser, Jacobs, and Cichy (2022) focus on abstract concepts to investigate the

analogies between representations in computational models and the human brain. In

their study, 19 participants are asked to elaborate 10 stories each, by using 61 nouns

displayed in different orders of sequence given an initial background context. Brain

activations are collected through fMRI as every noun is prompted to the subject;

computational representations for the same nouns are extracted from a word2vec model

trained on the SdeWaC corpus, Faass and Eckart (2013), containing 45 million German

sentences. With searchlight analysis, a representational dissimilarity matrix (RDM) is

computed on localized neural activities recorded when the 61 nouns are displayed;

similarly, a RDM for the same set of nouns is computed using the last hidden layer

activations extracted from a word2vec model.

Without employing models that explicitly learn a "network to brain" mapping, as

in the previously mentioned works, the authors identify cortical areas that are assumed

to be involved in abstract knowledge processing; these regions are also matched with

representations from computational models of abstract concepts and their compositions.

Firstly, high correlation is found between the network and brain RDMs in the left

interior parietal cortex (IPC), including the angular gyrus, the superior parietal and

middle occipital cortices and part of the right IPC. Arguably, this suggests that IPC

plays a crucial role in concept coding, and the structure of its representations is

partially reflected in the vector space constructed by computational models. However,

analogies in the structure of the two representational spaces may be also explained by

the linguistic properties of nouns, as word2vec models organize terms basing on their

co-occurrence in written language. Finally, the task introduced in this study highlights



ARTIFICIAL AND BIOLOGICAL NEURAL SYSTEMS, SPRING 2023 18

the role of the angular gyrus in the dynamic use of abstract knowledge, compatibly to

Davis and Yee (2018) and Price, Bonner, Peelle, and Grossman (2015); this does not

exclude a possible relevance for the angular gyrus in processing also concrete nouns,

comparing the representations of the two types requires further study.

High correlations of the RDMs in IPC are maintained when the model is trained

only on abstract (R = 0.36, p = 10−2) or concrete (R = 0.73, p = 10−3) nouns.

Moreover, brain scores are directly proportional to the size of the training set, with a

lower bound of 100,000 samples (0.02% of the dataset) estimated to obtain

above-chance positive correlation. This suggests that the representational structures of

both concrete and abstract nouns overlap with the organization of abstract knowledge,

which is supposed to emerge through compositionality.

Liao, Chen, and Du (2023) specifically test the capabilities of transformer models

in hierarchically organising abstract and concrete nouns. With WordNet, a dataset of

hypernyms (e.g. "furniture" is a hypernym for "bed") is constructred: each sample is a

noun-noun pair, the model is prompted to detect whether the relationship two nouns is

hypernymy or not. All the tested language models can detect hypernymy with

above-chance accuracy, however the performance is consistently worse in abstract nouns

with respect to concrete ones.

Model Concept type F1

BERT abstract 0.8435

BERT concrete 0.8912

T5 abstract 0.8543

T5 concrete 0.8888

ChatGPT abstract 0.4410

ChatGPT concrete 0.7304

Table 5. F1 scores in hypernymy detection with large language models, Liao et al.

(2023).

These studies suggest that language models, with and without context, can
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understand the structure of abstract knowledge but not as extensively as simple nouns:

terms can assume a symbolic valence with semantic relationships with other concepts;

as in Santoro, Lampinen, Mathewson, Lillicrap, and Raposo (2022), I argue that

language is insufficient to fully grasp their meaning and multimodal grounding is

necessary (vision, audio, interaction). In the following sections I will also discuss the

abilities and limitations of neural networks in compositionality, which underlies abstract

reasoning in the hierachical processing hypothesis.

Abstraction II: predicting semantic comprehension from brain activity

To what extent do language models understand concepts? Caucheteux, Gramfort,

and King (2022) investigate how GPT-2 brain scores (Pearson’s R correlation) vary with

semantic comprehension of short stories: 101 subjects listen to 7 narratives and compile

a questionnaire at the end of each one, fMRI activity is recorded during the process.

Activations from different layers of GPT-2, Radford, Wu, et al. (2018), are used to

predict voxel activity in the form of fMRI images: brain scores are eventually correlated

with semantic scores from each story’s survey. A high level of understanding of the

narrative is linked to better network-brain mapping, which may also be influenced by

the processing of speech, lexical and conceptual features in the input language.

Across all voxels, the correlation between brain and semantic scores reaches

R = 0.50, p < 10−15 with peaks in bilateral temporal, parietal and prefrontal cortices.

fMRI activity is predicted also with low-level audio features as word representations

(word rate, phoneme rate, stress, tone): the correlation between brain and semantic

scores is positive (R = 0.17, p < 10−2) but weaker with respect to GPT-2 predictions

(∆R = 0.32); low-level activations best predict activity in the left superior temporal

cortex. This analysis may suggest that audio processing is another indicator for

semantic comprehension: speech understanding is linked to attention and it reflects in

the acquired semantics.

Activations from the 8th layer in GPT-2 yield brain scores that best map to

semantic comprehension in comparison with the word embedding layer (the first) and
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middle layers. In deep learning literature, the level of depth at which a representation is

computed in a network reflects the level of abstraction of information. Activations from

the word embedding layer are considered to encode lexical features of language and best

match activations in the superior-temporal lobe and in pars triangularis. Conversely,

high-level representations from GPT-2 eighth layer encode contextual features and best

map to voxels in superior-frontal, posterior superior-temporal gyrus and in both the

triangular and opercular parts of the inferior frontal gyrus, known to be involved in

high-level language processing.

Figure 6. (A) brain and (D) semantic scores for a configuration (k, d), positive

βdistance, βlayer indicates scores are influenced by distance and depth respectively,

Caucheteux et al. (2022).

Finally, a fine-level analysis reveals the relationship between the network depth,

the span of attention to language and brain-semantic scores. By varying the depth of

the layer k employed for word representations and the length d of the input sentence,

the following relationships are found: both brain and semantic scores improve with

increased attention span d (Figure 6); reduced attention spans improve scores for middle

layers activations, suggesting that transformers may be more similar to the brain when
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the attention span is increased as function of the depth; finally, brain regions associated

to high-level concept processing are best predicted by activations from the deepest

layers and brain-semantic scores improve with longer attention spans; areas accounting

for low-level audio processing in the brain are best predicted by activations from the

shallowest layer of the network and scores are not influenced by the length of the inputs.

This study provides evidence supporting the idea of hierarchical language

processing in transformer models and how contextual information can improve abstract

reasoning. Computed representations at varying depths map to different areas of the

brain, finding evidence of reasoning at different levels of abstraction.

Hypotheses for language models to converge with brain activity

Decoding computational representations with semantic features

I have discussed various methods proposed to encode word semantics in sparse or

dense representations. With reference to Mitchell et al. (2008) and Caucheteux and

King (2022), I argued that engineered or learned word embeddings can predict brain

activity patterns, which are assumed to be general across multiple subjects: under these

assumptions, Caucheteux et al. (2022) investigated how semantic comprehension and

audio processing modulate these network-brain mappings and found positive

correlation. Eventually, Kaiser et al. (2022) observed analogies in the structure of

abstract and concrete concepts between artificial and biological neural systems.

Assuming that thus word embeddings encode in a structured way concepts with a

certain degree of understanding, I overview different techniques used in literature to test

these hypotheses.

Word embeddings are computed with what have been generally defined as

Distributional Semantic Models (DSMs), Lenci (2018), ranging from count-based to

predictive methods. However, the representations in these models are not interpretable:

content is encoded in learned numerical representations across multiple dimensions;

vectors are a "holistic" representation of knowledge and word meaning can be inferred

by computing the relative position with respect to other concepts in the
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representational space. Alternatively, probing tasks, Ettinger, Elgohary, and Resnik

(2016), have been commonly used in literature to look for subsets of embeddings that

represent specific semantic features (e.g. positive sentiment words): regression models

or neural networks are employed as classifiers for this task; however, this technique does

not address the problem of explainability.

Chersoni et al. (2021) propose an alternative approach taken from computational

neuroscience: research in neurosemantic decoding attempts to identify mental states

represented by recorded brain activity, usually through functional magnetic resonance

imaging (fMRI). More practically, fMRI images of words are linearly mapped to human

similarity scores for different semantic features. With respect to neurosemantic

decoding, the authors don’t consider word embeddings as the prediction target but

rather as the input space to project into interpretable features; the goal is thus to

understand what semantics are best encoded in language models, how they impact

performance in semantic probing tasks and whether they can explain the difference

between contextualized (e.g. BERT, ELMO) and "static" word representations (e.g.

word2vec, GloVe).

Embeddings from a set of predict (ELMo, Chiu and Baker (2020); BERT,

Devlin et al. (2018); SNGS, Mikolov et al. (2013); FastText, Bojanowski, Grave,

Joulin, and Mikolov (2017)) and count models (GloVe, Pennington et al. (2014),

PPMI, Levy and Goldberg (2014)) are compared to find the best mapping to semantic

feature vectors. For models that encode context, a word is represented by the average

embedding over 1,000 sentences randomly sampled from Wikipedia, reflecting the

hypothesis that context-independent representations are an abstraction of token

exemplar concepts, Yee and Thompson-Schill (2016). Semantic features from Binder et

al. (2016) are fixed as prediction target: they consist in valence ratings in a 0-6 scale for

65 properties (noun, verb, adjective); this dataset provides thus semantic ratings for 534

abstract and concrete words; empirical evidence in neurocognitive research reports the

relevance of these features in conceptual organization, Chersoni et al. (2021). To map

LM activations to Binder features, a PLS regression model is used with different values
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for K components to be tested, K ∈ {30, 50} is found to be optimal. The models are

evaluated with leave-one-out cross-validation, by computing the Mean Squared Error

and the top 1-5-10 accuracy to predict the left out word among the most similar feature

vectors. As baseline, a PLS regression model is trained to project randomly generated

word embeddings.

Model (↑) Top-1 (↑) Top-5 (↑) Top-10 (↓) MSE

PPMI.w2 0.14 0.42 0.57 0.16

PPMI.synf 0.14 0.46 0.61 0.15

PPMI.synt 0.10 0.36 0.54 0.16

GloVe 0.18 0.43 0.58 0.16

SGNS.w2 0.19 0.49 0.64 0.15

SGNS.synf 0.20 0.55 0.71 0.14

SGNS.synt 0.23 0.57 0.74 0.14

FastText 0.20 0.53 0.70 0.14

ELMo 0.22 0.50 0.68 0.16

BERT 0.30 0.59 0.76 0.15

Random 0.00 0.01 0.01 0.30

Table 5. Evaluation scores for LM-semantic features mapping with PLS Regression,

K=30, Chersoni et al. (2021).

The results confirm the superiority of contextualized embeddings over static

DSMs, as demonstrated also by Vulić, Ponti, Litschko, Glavaš, and Korhonen (2020),

followed by the syntactically enriched versions of skip-gram vectors (SNGS), Table 5.

A further interesting analysis consists in computing the Spearman correlation

coefficient between the predicted and the ground truth semantic feature vectors.

Strikingly, as shown in Figure (7), the highest correlation is achieved for features

belonging to the cognitive, causal and social domain, for which psycholinguistic studies

theorize that language, and thus text, is the main source for this type of information,

Vigliocco and Gareth (2007). Lower correlation corresponds to somatosensory features
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of concrete concepts; this occurs also for spatial and temporal features, compatibly to

the hypothesis that temporal concepts are based on spatial references and language

grounded with other modalities (e.g. vision or social interaction) is fundamental, as

claimed by Santoro et al. (2022) and Binder et al. (2016).

Figure 7. Average Spearman correlation per semantic domain between the predicted

and the original Binder ratings, Chersoni et al. (2021).

An ablation study to query semantic concepts driving brain mapping

To further understand the overlappings between language models and the human

brain, I conduct an ablation study to assess the influence of different semantic features

on brain mapping. Similar to the work of Chersoni et al. (2021), a multilayer

perceptron network with 100 hidden units is trained to map GPT-2 word embeddings to

word fMRI images from the narrative Harry Potter dataset, Wehbe, Vaswani, Knight,

and Mitchell (2014). For computational efficiency I use the post-processed fMRI images

of 500 random voxels provided by Hollenstein et al. (2019). This study differs in the

adopted methodologies with respect to Mitchell et al. (2008) for two aspects: firstly,

brain activity is collected from subjects reading words in a continuous a story, thus

activations are contextualized. Secondly, compatibly to Utsumi (2020) and Chersoni et

al. (2021), I assume that voxels can condition each other and activate due to spatial or
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topological proximity: a multivariate multiple linear regression model is chosen over

independent voxel regressors.

Figure 8. LM activation steering by computing a semantic vector from vector

differences, Turner et al. (2023).

To extract contextualized embeddings from GPT-2, I consider the intermediate

representations from the 8th layer of the network, as shown by Caucheteux, Gramfort,

and King (2023) to best map to brain activity. In line with the methodology from the

same authors, each word is concatenated to a context window of 8 preceeding words (=

40 GPT tokens), corresponding to 3.15 seconds of speech with 2.54 words/second.

The influence of different semantic features is measured by subtracting them from

each word’s context. To achieve this, I employ a recent alignment technique named

activation steering, introduced by Turner et al. (2023): given a set of terms

representing a concept, e.g. "man", "woman", female", "male" for gender, the average

GPT embeddings from layer K represent the semantic category to remove; by

subtracting this vector from activations at layer K at inference time, I expect to obtain

an output that is deviated off the subtracted direction. In Figure 8, Turner et al. (2023)

use the difference from a "love" and a "hate" sentence to add a "love activation" and

generate positive sentences with GPT-2. Similarly, I compute the steering vector for

three semantic categories: time, gender and sensory-motor (taken from Mitchell et al.

(2008)).

sensory_motor = ["see", "hear", "listen", "taste", "smell", "eat",

"touch", "rub", "lift", "manipulate", "run", "push", "fill",
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"move", "ride", "say", "fear", "open", "approach", "near",

"enter", "drive", "wear", "break", "clean"]

gender = ["male", "female", "boy", "girl", "man", "woman"]

time = ["when", "yesterday", "ago", "last week", "last month",

"last year", "still", "yet", "while", "when", "soon", "then",

"next week", "next month", "next year", "tomorrow",

"the day after tomorrow"]

The predictive model is trained and evaluated for each ablation with cross

validation on 20 splits (average), using the metrics introduced by Chersoni et al. (2021):

mean squared error (MSE); top-N-accuracy (Acc@Top5, N = 5), that is the fraction of

times the ground truth vector is among the closest N to the prediction. The scores for

different ablations (removed semantic categories) are compared with a baseline

consisting in GPT-2 without any steering; the difference in accuracy between each

model and the baseline is reported as "∆". I use a two-tailed T-test to assess whether

the difference between each model score and the baseline over 20 splits is neglibile (null

hypothesis).

The reported results firstly suggest that GPT-2 embeddings linearly map to brain

activity from contextualized words, as shown by Caucheteux and King (2022),

Caucheteux et al. (2023). Moreover, the relevance of features from different semantic

categories emerges: removing information about gender, sensory-motor actions and time

affects brain mapping with high statistical significance, Table 6. I hypothesize the

importance of each feature depends on its presence in the read story: information about

the subjects such as gender, is critical for overall understanding; sensory-motor and

temporal features provide further context.
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Removed semantic category MSE (↓) Acc@Top5 (↑) ∆ p-value

None (baseline) 0, 0148 ± 0, 0159 0, 9838 ± 0, 0309

Sensory-motor 0, 0722 ± 0, 0235 0, 7178 ± 0, 2033 −0, 2660 3, 3623 · 10−10

Temporal 0, 0735 ± 0, 0141 0, 6843 ± 0, 1437 −0, 2995 2, 1118 · 10−14

Gender 0, 0814 ± 0, 0225 0, 5902 ± 0, 1905 −0, 3936 2, 9526 · 10−12

Table 6. Brain mapping scores for models steered away from different semantic features. ∆

and p-value are computed with respect to the baseline.

From this digression I derive further hypotheses: a narrative communicated

through language yields knowledge on a set of entities with different levels of

abstraction (concrete objects vs. symbols); assuming semantic comprehension is

centered on a subset of subjects, features related to such entities are crucial for overall

understanding and they are reflected in brain activity.

Evidence of predictive coding theory in the brain

According to the hierarchical predictive coding hypothesis, the brain continuously

anticipates sensory inputs with predictions that originate top-down in different regions,

each area learns and refines an internal model of the environment based on the statistics

of inputs. The difference between predictions and inputs, the prediction error, is

propagated to areas dedicated to high level processing to update the internal models. In

testing these assumptions, Wacongne et al. (2011) looks for evidence of two phenomena:

responses to stimuli of different semantic levels should differ in the activation pattern,

suggesting hierarchical processing; brain responses should reflect predictive behavior

rather than passive adaptation to the upcoming stimuli, suggesting an active role in

anticipating them.

In this study, a group of subjects is presented auditory sequences of tones

organized in three possible blocks: the "xxxxx" block, consisting in a starting sequence

of 5 equal tones repeated 25 times, then followed by 100 repetitions of random

sequences that can be either the same (75%, "local standard"), differing by the last tone

(15%, "local deviant") or only 4 equal tones (10%, "omission"); the two other blocks
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follow the same paradigm but the starting and most likely sequences are "local deviant"

and "omission", respectively. Analyzing responses to sequences with omission is crucial:

depending on the preceeding pattern, "xxxxx" or "xxxxY", evoked potentials similar to

the missing stimulus are indicators of predictive behavior. The analysis is conducted

separately with different brain imaging techniques: electroencephalography (EEG),

magnetoencephalography (MEGm) magnetometers and MEG gradiometers (MEGg).

Figure 9. Activity in the auditory (A) and right precentral cortex (B) for the different

combination of sequences and variations, Wacongne et al. (2011).

The effect of local deviance is reported in all the recordings: responses peak at

120ms after the onset of the fifth tone of the sequence; for both the local standard and

local deviant blocks, the novelty response matches an activity pattern known in

literature as "mismatch negativity" (MMN), which in this study is localized mainly in

the temporal cortex. MMN response is observed to be "blind to the global deviant":

when the starting sequence is switched to "xxxxY", this response pattern persists with a

lower intensity, showing a lack of sensibility to the switch in the overall sequence and

rather reflecting surprise to unexpected tone-by-tone transitions, Figure 9. Conversely,

a later activity pattern is found to be distributed across the cortex, including

particularly the prefrontal and parietal areas: this is defined as the "P3b wave",

Wacongne et al. (2011), and it represents the "violation of violation", i.e. a monotonic

"xxxxx" sequence following "xxxxY" doesn’t meet the expectation; this activity pattern
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is associated with brain processing that extracts and detects more abstract rules at

sequence level, contrarily to tone-level changes to which MMN responses correspond.

The analysis of responses to omitted tone sequences conducted by Wacongne et al.

(2011) thus support the idea of active prediction underlying language processing,

reflected in recorded brain activity. Furthermore, the difference in the activation

patterns between MMN and P3b highlights two levels of reactions to unexpected signals:

predictions in the brain occur at multiple levels of abstraction, thus activity representing

errors propagates across different cortical areas possibly at different time frames.

Further evidence is found in the experiments conducted by Heilbron, Armeni,

Schoffelen, Hagoort, and de Lange (2022), which focus on the task of linking brain

responses to unexpectedness of words. GPT-2 is used to extract semantic word

embeddings and level of surprisal for the next words in sequence, brain activity is

recorded with EEG and MEG.

Firstly, it is confirmed that continuous word embeddings better predict brain

responses over representations based on single-word audio features; adding per-word

unexpectedness (conditioned probability by context) as regression input is found to

modulate predicted neural activity, which further suggests that prediction underlies

language processing and errors are reflected in brain responses. Furthermore, the

authors derive for each word different levels of features: syntactic, with part of speech

tagging; phonetic, with a phoneme classification model; semantic, with the averaged

GloVe embedding of the context words. The effect of each addition is measured by

comparing the ground truth and the predicted next word: each feature improves brain

mapping scores in different, unique areas, Figure 10; surprisal on the syntactic level

modulates activity in focal and temporal areas; error on the semantic level explains

later responses in a distribute set of cortical areas (including frontal).
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Figure 10. Unique patterns of explained variance in brain activity by lexical (POS),

semantic and phonemic features, Heilbron et al. (2022).

Compatibly to Wacongne et al. (2011), this study suggests that while

understanding speech, the brain performs prediction on different levels of abstraction.

Consequently, I consider hierarchical predictive coding as a theoretical base to find

analogies in language models: what linguistic features modulate similarity with activity

in higher cortical areas; what features can improve convergence between algorithms and

the brain.

Evidence of predictive coding theory from language models

The beginning of deep learning, arguably marked by the first applications in

computer vision such as AlexNet, Krizhevsky, Sutskever, and Hinton (2012), determined

a paradigm shift in designing neural networks: stacked layers of computational units

can learn representations of data at varying levels of abstraction, allowing for complex

tasks such as object classification, pixel-wise semantic segmentation (i.e. determining

contiguous areas of the image that belong to an entity) or captioning. In natural

language processing, transformers lead to modeling language distributions from

internet-scale datasets thank to their capability to scale in number of layers, and thus

algorithmic parameters by design, Brown et al. (2020). Kaplan et al. (2020) and Wei et

al. (2022) examined the performance of language models of increasing size and found

linear correlation with the amount of solved tasks and performance; this further
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suggests that going deeper in neural architectures can improve their abilities in

predicting abstract concepts as well as with lower level information.

In the attempt to reconcile hierarchical predictive coding theory with algorithmic

language processing, Caucheteux et al. (2023) analyze computational and brain

activations elicited by the processing of text stories. The experimental setup includes

304 individuals, each listening on average to 26 minutes of narratives, while neural

activity is recorded with fMRI. GPT-2 XL, Radford, Wu, et al. (2018), is used to

extract each word’s representation conditioned by the preceeding context. Compatibly

to Caucheteux and King (2022), activations from the 8th layer of GPT-2 best predict

recorded fMRI, achieving the highest brain scores in voxels in the auditory cortex, the

anterior and superior temporal areas.

As language models are trained to predict the next word in sequence, word

representations are enriched in two ways to test predictive coding theory: firstly, next

word embeddings are concatenated with the activations of w = 7 future words at

distance d (position of the last word of the sequence with respect to the current

predicted one), this improves brain scores by 23% (±9% across individuals) with d∗ = 8.

With "forecast score" F , the authors refer to the brain prediction performance

obtained by including future word embeddings. Secondly, GPT-2 is fine-tuned to

predict not only the next word, but also the embedding vector of the future word at

distance d = 8: this improves the accuracy by ∼ 2% in predicting brain responses from

frontoparietal areas, while no significant changes are found in auditory regions. These

results suggest that predicting longer context windows leads to representations that

better reflect brain activity, also when the model does not necessarily predict words: the

authors argue that processing continuous representations, such as direct embedding

vectors, lowers prediction errors that can occur due to the lack of concept of geometrical

proximity with raw words.

Do different areas of the brain predict the same time window? Varying distances

d∗ are computed to maximize the forecast score F in each cortical region: long

distances, d∗ > 9, are matched with the inferior temporal gyrus (IFG), with respect to
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the anterior superior temporal sulcus (aSTS), with ∆d = 0.9 ± 0.2. Forecast scores are

also modulated by the depth of the GPT-2 layer k from which the activations are

extracted: embeddings with k∗ > 6 improve F in the association cortex, while

activations with depth k∗ < 6 improve F in aSTFS and Heschl’s gyri (∆k∗ = 2.5 ± 0.3),

Figure 11. In conclusion, predictions of activity in frontoparietal cortices are found to

depend on inputs with long contexts, with respect to areas linked to the processing of

lower level features, e.g. audio.

Figure 11. Depth k∗ maximizing forecast score F per voxel(a) or brain region(b),

Caucheteux et al. (2023).

As in Caucheteux, Gramfort, and King (2021), word embeddings are

deconstructed into syntatic and semantic vectors to further investigate concept

representations on multiple levels of abstraction. Syntactic vectors are computed by

generating 10 possible sentences given the current context and then averaging the

embeddings, Xsyn; by construction, semantic vectors are computed by subtracting the

syntactic component to the original word embedding, Xsem = X − Xsyn. Forecast scores

F significantly improve with semantic vectors only if concatenated with embeddings

from long distance words (d = 8), peaking in the frontal and parietal lobes; conversely,

syntactic embeddings maximize brain scores when added to words of relatively short

distance (d ≤ 5), best mapping to superior temporal and left frontal areas. Overall,
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semantic embeddings with long-range contexts map to activity in regions accounting for

high-level processing: lateral, dorsolateral, inferior frontal and supramarginal gyrus;

syntactic embeddings with short term context best predict low-level processing in the

superior temporal sulcus and gyrus.

Figure 12. Forecast scores F are modulated by future words distance d and type of

embedding (short range, long range), Caucheteux et al. (2023).

This study is found to be compatible with the hypotheses from Wacongne et al.

(2011): by knowing the nature of computational representations, it is possible to verify

correspondence to brain activity in processing more or less abstract concepts; evidence

suggests that language models can generate predictions spanning across abstraction

levels and contextual spans ranges, which are reflected in cortical areas theorized to

account for high-level reasoning.

Challenging predictive coding theory as base of brain’s processing

The studies from Chersoni et al. (2021) and Caucheteux and King (2022) suggest

that next-word performance is positively correlated with the ability to predict neural

activity from LM embeddings. From the perspective of predictive coding theory, which

sees the ability to predict future events as the base of brain processing, this correlation
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is tendentially interpreted as causation: Antonello and Huth (2023) challenge this vision

by assessing a variety of linguistic abilities that condition brain mapping performance.

Figure 13. Correlation between brain mapping (encoding) performance and next-word

prediction (perplexity), Antonello and Huth (2023).

In the first experiment, 97 different representations per word are extracted from

contextual, non-contextual and seq2seq-translation language models (including BERT,

GloVe, Transformer-XL, GPT-2). Correspondingly to each model, each voxel activity is

modeled with linear regression, similarly to Chersoni et al. (2021) encoding models.

Brain mapping performance is measured with Pearson’s R correlation between the

predicted and the actual activations on the held-out test set; next-word performance is

measured by computing cross entropy over the distribution of predicted word

embedding from the previous one in sequence with linear regression. An additional

metric is introduced, the representational generality performance (RGP), defined as the

average regression score for a (model, word) pair in predicting the word’s

representations from the other 96 models: this metric should represent to which extent

a model learns linguistic features that well transfer regardless the training task (causal

LM or masked LM) and context (GloVe or GPT).
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Positive correlation between encoding models and language modeling performance

is found (R = 0.847), in line with previous works; similarly, representational generality

performance positively correlates with the performance of encoding models (R = 0.864).

This suggests an alternative hypothesis to predictive coding: LM activations well map

to brain activity as they encode generally useful representations independent from the

training task; consequently, the causality argument involving the ability to predict the

next word should be considered with caution.

Figure 14. Negative perplexity and brain mapping (encoding) performance as a function of

layer depth in GPT2-S and GPT2-M, Antonello and Huth (2023).

Further experiments challenge predicting coding theory: with a technique similar

to RGP, word representations from different transformers are mapped to activations

from sequence-to-sequence models, that is LMs that can translate between English and

German (ENG → DE translation transfer performance); this metric is found to well

correlate with brain mapping scores (R = 0.780). Given the findings from Caucheteux

et al. (2023), one could argue that the learning objective of translating between the two

languages underlies the learned concepts as in the brain: within this experimental

setting, it would be absurd as none of the subjects in the study speak fluent German.

Alternatively, Antonello and Huth (2023) suggest that linguistic models that learned

general enough features to transfer to translation do map well to brain activity.
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Figure 15. (B) voxel-wise contributions to brain response variance for each model (9th,

12th layer and both), (C) mean regression scores to brain response variance for the

three models, Antonello and Huth (2023).

Finally, an analysis on the performance of different layers in GPT-2 models further

tests the relationship between brain mapping and next-word prediction. As found by

Caucheteux and King (2022), intermediate layers best predict brain activity, while the

last ones best perform in language modeling, Figure 14 (left); this reflects the similarity

between the inputs and activations in the earliest layers, as well as respectively the

outputs with activations in the final layers. Degradation in brain mapping performance

of the last layers, Figure 14 (right), should not occur if next-word prediction were the

direct cause for similarity with neural activity. Additionally, with Variance Partition

Analysis, activations in the 12th layer (last) are shown not to uniquely explain variance

in brain responses in any cortical region, Figure 15.B, conversely to embeddings

extracted from the 9th layer, which also report a higher regression score, Figure 15.C.

In conclusion, we can argue that activations in the middle layers of GPT-2 may encode

linguistic features that are agnostic to the training task and they’re general enough to

map to brain activity. Antonello and Huth (2023) suggests that representational

generality may underlie this success (compatibly to Santoro et al. (2022) and Binder et
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al. (2016)) and thus the next word prediction task just allows these concepts to emerge.

The reported observations are compatible with the idea that learned concept that

well transfer across tasks and modalities are shared between computational models and

the brain. Two questions follow: what learned features constitute such general

concepts? How do sentence-level predictive tasks alter word representations and

consequently brain mappings?

Reasoning properties and limitations of transformer models

An analysis on generalization and compositionality of computational features

Under the theory that brain processing is based on hierarchies, it is valid to

assume that algebraic operations underlie the relationships between concepts: simple

notions can be composed into more complex ones, e.g. opening a door implies walking

towards it, pulling the handle and pushing it. This originates the idea of linguistic

compositionality, which is at the base of natural language understanding research: in

earlier attempts from Chomsky (1956), discrete sets of symbols and production rules

were used to reproduce language production; later on distribution-based methods gained

traction as they can learn the distribution of text from large corpora without explicit

design. Arguably, this recent technique can learn to produce language fluently, that is to

be linguistically productive, without necessarily constructing and conveying a meaning.

Early experiments on compositionality in neural networks have been conducted by

Gulordava, Bojanowski, Grave, Linzen, and Baroni (2018), which tested a recurrent

neural network pre-trained for language modeling to classify the next word among two

options: a grammatically correct one or a random inflection. The network achieved a

largely above-chance-classification accuracy on long sequences, suggesting it may be

able to learn linguistic rules over mere fluency from context. Lakretz et al. (2019)

expanded on this work and found that predictions rely on the activation of few units

and, along with another subnetwork, these are sensible to inputs with complex

constituency trees. Lake and Baroni (2018) introduces SCAN: a benchmark to test

compositionality in sequence2sequence models by translating commands into outputs,
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e.g. "jump twice" = "jump jump". RNN performance is found to depend on the training

data: with random splits, the network achieves near perfect accuracy but it’s assumed

to depend on fuzzy learned patterns. Splits omitting one primitive, e.g. the word

"right", test the capability of the network to extrapolate to unseen commands e.g. by

seeing examples of "left" opposite to "right" and "jump" associated with "left", it should

understand and execute "jump right"; the performance of RNNs in this setting is below

chance-level, supporting the idea that the learned patterns are brittle.

Dessì and Baroni (2019) introduce a novel architecture, based on convolutional

layers and attention, drastically improving accuracy by circa 40%: the choice of the

inductive biases, encoded in the architecture, determines better compositional

capabilities. Subsequent experiments, however, reveal that prediction error is uniform

across unseen patterns, raising doubts on the consistency of the learned patterns.

Productivity without compositionality in neural networks is hypothesized also by

Andreas (2019) in emergent communication: one network has to communicate to the

other the object to classify through a discrete set of symbols, this task is shown to be

solved by learning representations that do not compose with each other.

Transformers encode different inductive biases with respect to convolutional and

recurrent neural networks: portions of input data are compared with a "key matching",

or dictionary, paradigm. Ontanon, Ainslie, Fisher, and Cvicek (2022) tests various

additions to the transformer architecture that can improve compositionality

capabilities: relative position encoding, that is encoding each pair of input tokens with

their distance, helps in tasks relying on position information e.g. maths; a copy

decoder, which adds a cross-attention layer attending the transformer encoder’s output,

significantly improves performance in all compositional tasks; increased model size is

shown not to generally improve performance, few exceptions involve tasks where prior

knowledge is crucial on top of logical rules; weight sharing largely improves performance

in tasks that require learning primitives e.g. "right"/"jump"/"run", using the same

weights across depth increases the robustness of learned concepts across levels of

abstraction; finally, simplifying the target outputs with intermediate sequence
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representations (or formats) overall slightly improves performance on SCAN.

Arguably, the success of current language models is partially attributed to their

linguistic fluency, that is their productivity. However, their capabilities in constructing

concepts from simple notions and following logical rules are uncertain and currently at

the center of NLP research. The choice of inductive biases, that is the logic by which

information flows in the neural network, is arguably the most relevant factor.

Quantifying generality in learned language features

In the previous chapters I reviewed a set of features that gradually improved

computational word embeddings to predict brain activity: activations from the middle

layers of a transformer model seem to best abstract from both raw inputs and the

training task; contextualized word representations best predict semantic domains linked

to language as the main modality; high performance in language modelling and

representation generality across different models are correlated with high brain mapping

scores. One could thus suppose that transformer models generalize concepts beyond the

training task and context: how can this property be measured? How does this affect

similarity with brain’s processing?

As previously argued, a language model may not be capable of learning the true

meaning of a concept only from textual instances. However, Patel and Pavlick (2022)

show that only with language, even "shallow" relations between concepts can hold in

grounded domains i.e. representational spaces enriched with concrete world examples,

this spatial property is defined as isomorphism. To test this hypothesis, GPT-2 and

GPT-3 models of different sizes are provided with few examples of grounded concepts,

e.g. the word "left" to explain the position of a tile in a text grid, instead of further

training the model, the examples are included in the textual input (in-context

learning, Brown et al. (2020)); subsequently, the models are asked (1) to predict

grounded concepts in an unseen world example (of different shape or size), (2) to

predict a previously unseen grounded concept. Three conceptual domains are

considered: spatial (e.g. left, right), cardinal (e.g. nord, south), colour.



ARTIFICIAL AND BIOLOGICAL NEURAL SYSTEMS, SPRING 2023 40

Figure 16. Model predictions for an unseen world instance of the concept "left", Patel

and Pavlick (2022).

As GPT models are trained on large text corpora, it is possible that the prompted

worlds have been already seen at training time in analogous forms, e.g. a matrix

localizing a semantic position. To verify whether transformers perform actual reasoning

over memorisation and pattern matching, as challenged by Dziri et al. (2023), the model

is tested on "rotated" versions of the world examples that respect the structure of

concepts: this corresponds to shifting by fixed amounts the position of the tiles in the

matrices for the spatial and cardinal worlds. Randomly rotated worlds are eventually

tested to verify the effects when isomorphism is not preserved.

Table 7. Accuracy scores across domains and models in generalising to unseen worlds,

Patel and Pavlick (2022).

To measure generalisation to unseen worlds, the models are asked to predict

concepts for unseen scenes with 20 examples; top-1 and top-3 accuracy correspond to

the fraction of cases when the model includes the correct guess in 1 or 3 generated
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sentences, respectively. As baseline, the accuracy of random guesses are considered:

R-IV for words randomly sampled from the model’s vocabulary; R-ID for words

randomly sampled from the in-domain words (e.g. north, south, in the spatial domain).

A significant gap in performance is present between GPT-3 (175B parameters) and the

rest of the models, including GPT-2 1.7B, GPT-2 774M and random guesses, Table 7;

this is compatible with the common idea that GPT-3 well learns from context and its

learned representations well transfer to new tasks, a small difference in performance

between the original and the rotated worlds suggests that the model does not indeed

memorize world layouts but rather semantic patterns.

To test performance with unseen grounded concepts, the models are prompted to

predict novel concepts given some examples. For instance: in the spatial domain, to

predict "right", grounded examples include world matrices for positions such as up, left,

down-left; in the colour domain, different RGB triplets are presented along with labels

from 6 primary colours or 57 colours from combinations, a novel color combination is

then requested given the RGB code. Surprisingly, the accuracy achieved by the largest

model, GPT-3, exceeds by a significant margin the scores from random guesses and

smaller models in all the domains and transformation (original, rotated, random), Table

8. Similarly to the previous experiment, performance is preserved in predicting concepts

from "rotated" world instances, which further suggests that logical relationships between

e.g. colors, spatial references are transferred to isomorphic grounded spaces.

Table 8. Prediction scores for unseen concepts in each domain and permutation, Patel
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and Pavlick (2022).

It is worth mentioning that the prompted tasks are differently understood by

models of varying sizes. When these fail to ground concepts, it is possible to distinguish

conceptual errors by simple hallucinations: GPT-3 (175B) is shown to almost always

generate "in-topic" answers, that is words belonging to the prompted domain (in 98% of

the prompts), contrarily to smaller models (in 53% of the prompts). Moreover, a

grounding distance is computed to quantify the closeness of transferred concepts to

ground truth: e.g. in color domain, the distance between the predicted color "red" and

ground truth "orange" is the euclidean distance between their respective RGB

coordinates. Language models of increasing size tend to close this gap, Table 9.

Table 9. (left) grounded distance of random guesses and GPT models (C) from the

ground truth; (right) model predictions and relative grounding distances wrt. the truth,

Patel and Pavlick (2022).

This study provides evidence that language models learn abstract representations

that can be instanced with further information from the concrete world. As claimed by

Patel and Pavlick (2022), a new approach to grounding language models could be

proposed: instead of training a transformer from scratch with cross-modal data, it is

sufficient that large models learn sufficiently rich conceptual structure to transfer to

concrete instances more efficiently.

Challenging the intrinsic problem solving ability of transformer models

Arguably, transformers can learn concepts at different levels of abstraction,

Caucheteux et al. (2023), with logical relationships, even shallow, that can be enriched

with grounding, Patel and Pavlick (2022); Baroni (2019) provided evidence that in

reasoning tasks, simple concepts (primitives) can be learned and combined according to
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given instructions, but to understand the underlying computational rules is a task

where neural networks perform inconsistently. This poses a major question: can neural

networks learn to reason by construction? Put in the context of large language models,

do transformers learn to perform algebraic operations or do they learn by rote?

Dziri et al. (2023) advance two theories: transformers achieve high performance

only in solving low complexity operations, especially when (partial) examples are

provided in the training set, suggesting that reasoning is approximated with pattern

matching; as computation in transformers flows in one way, errors originated at

intermediate steps of computation propagate and lead to incorrect outputs.

Figure 17. Source code (left) and computational graph (right) for the one-digit

multiplication algorithm, Dziri et al. (2023).

These hypothesis are tested by considering deterministic algorithms, e.g. one-digit

multiplication, represented by computational graphs: nodes are (partial) results of

computation, edges are mathematical operations of different types; the depth of a

computational graph and the average nodes per layer are proxies for complexity of the

algorithm, Figure 17. Large language models of different sizes (GPT-3, Chat-GPT,

GPT-4) are fine-tuned on (question, answer) pairs and evaluated with train-test

validation on solving n-digits multiplication and Einstein’s puzzle (assigning a subset of

descriptions to each house in a list, given some constraints). For the first problem, the

dataset is constructed by enumerating all the pairs of multiplying factors up to 4 digits,

the models are evaluated on a subset not seen during training or examples with more

digits. Alternatively, the models are also trained with (question, scratchpad) pairs: a
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scratchpad is a step-by-step solution of a problem in written text. All the LLMs achieve

near-perfect performance on the training split but fail to generalize at test time;

scratchpads slightly improve performance, possibly prompted partial solutions may

elicit the correct answer, Figure 18; success rate drastically decreases with more

complex problem instances e.g. more digits, more elements to guess.

Figure 18. Zero-shot LM performance in two tasks, average parallelism is the ratio between

the number of nodes and the reasoning depth of the graph, Dziri et al. (2023).

Despite the results suggest a lack of generalization of logic, transformers can to

learn patterns between inputs and outputs: this is quantified by computing the Relative

Information Gain (RIG) of a random variable given a conditioning stochastic process; in

the multiplication task, high RIG is found between the first output digits and the first

ones in the input factors, suggesting that numerical patterns could be learned. This

hypothesis is tested by counting the occurrencies of each computational subgraph (each

node with all its ancestors) in the training set: this quantity is high for all the correctly

predicted (partial) results. Finally, the computational graph is analysed to localize the

cause for incorrect predictions: local errors, when a node is incorrect but its parents are

not; propagation errors, when some parent nodes are incorrect; restoration errors occur

when all incorrect nodes precede a correct partial output. Propagation errors

systematically outnumber local ones and they increase with deeper graphs: this means

that not only the success rate of prediction decreases with problem complexity, but also

that the model can learn single-step operations that fail to compose, leading to

propagation errors.
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Figure 19. (left) average frequency of occurrency of test sub graphs in the training set

wrt. subgraph depth; (right) frequency of nodes per depth level in each error category,

Dziri et al. (2023).

The incapability of transformers in generalising algorithms can be traced to the

training objective: next-word prediction allows memorisation over reasoning, that is

shortcut learning; I conjecture that the lack of compositional skills may determine the

divergence in information processing between large language models and the brain.

Conclusion

Arguably, transformer models constituted a turning point in deep learning: the

attention mechanism is universal and applicable to any sequential task at scale. Current

approaches on large-scale network pre-training take from computational linguistics:

semantics are assumed to emerge from statistical properties in the inputs; this is

linkable to learning in humans, which construct internal representations of the world

through experience and observation.

Understanding concepts goes beyond communicating them fluently: to convey

meaning, the speakers have to agree on a shared "world model" whose entities refer to

concrete examples or not; reasoning implies understanding the relationships between

these elements and applying logical operations, supporting the idea that information is

hierarchical and composable. Research in the intersection between neuroscience,

linguistics, and artificial intelligence suggests that the brain operates by alternating
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observation with prediction of multiple time horizons.

The success of large language models is partially justified: beyond linguistic

fluency, they can understand relationships between concrete and some abstract

concepts, but fail at constructing new meanings from them; new evaluation techniques

are necessary to assess their problem-solving capabilities over memorization. The

similarity of computational representations to brain activity may be a proxy for the

quality of learned concepts: models that predict multiple words in the future and

demonstrate semantic comprehension better resemble human information processing.

These observations converge to one conclusion: it is necessary to shift to a

cognitive approach in model training and evaluation, driving model design towards

better task solvers.
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